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Abstract
As a first step toward a successful field theory of Brownian particles in
interaction, we study exactly the non-interacting case, its combinatorics and
nonlinear time-reversal symmetry. Even though the particles do not interact,
the field theory contains an interaction term: the vertex is the hallmark of the
original particle nature of the gas and it enforces the constraint of a strictly
positive density field, as opposed to a Gaussian free field. We compute exactly
all the n-point density correlation functions, determine non-perturbatively the
Poissonian nature of the ground state and emphasize the futility of any coarse-
graining assumption for the derivation of the field theory. We finally verify
explicitly, on the n-point functions, the fluctuation–dissipation theorem implied
by the time-reversal symmetry of the action.

PACS number: 05.40.Jc

Introduction

Glassy features in the dynamical behavior of colloidal suspensions are among the most
intriguing aspects of their phenomenology. Their idealization as fluids of interacting Brownian
particles might provide the key to understand glassiness for continuous, finite-dimensional
systems. A satisfying analytic treatment seems, however, still out of reach.

The evolution of a system of N Brownian particles can be described either by a system of
N stochastic ordinary differential equations or, after introducing a density field, by a stochastic
partial differential equation [1, 2] which in turn can be recast into a field theory. A field-
theoretic approach is the ideal framework for the study of conservation laws, encoded as
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symmetries of the action. The appeal of a field theory is then twofold: the ease to conceive
perturbative series expansions in the (weak) inter-particle potential, and the possibility of
obtaining non-perturbative results deriving approximate self-consistent equations for the
correlators. In either case, the symmetries of the action should act as a guidance and a
constraint for any approximation scheme.

In order to study the glassy dynamics it is necessary to examine a field theory in its strongly-
interacting regime. To this aim, attempts have been made to re-sum whole classes of diagrams,
at all orders in the interaction potential, through (one-loop) self-consistent approximations
[3, 4]. The main obstacle toward a successful resummation scheme is that the time-reversal
symmetry of the appropriate action involves nonlinear transformations of the fields [5], relating
n-point functions for different n’s in an intricate fashion: this precludes the possibility of
writing easily-solvable self-consistent closure relations for the n-point functions which respect
the symmetry. Although it is possible to linearize the symmetry [5–7] and set up a symmetry-
preserving perturbation theory, additional fields need to be introduced, and the formalism turns
out to be rather cumbersome. In general, a symmetry enforces relations between the field-
theoretic correlators; in particular, the time-reversal symmetry of the field theory we are about
to study leads to the correct fluctuation–dissipation relations expected between correlation and
linear response functions. The fluctuation–dissipation theorem (FDT) is a firmly grounded
physical requirement for an equilibrated system: solutions violating FDT may arise because of
terms which drive the system out of equilibrium, explicitly breaking time-reversal symmetry, or
as a consequence of the spontaneous symmetry breaking occurring in glassy phases. However,
any solution describing the liquid phase would clearly be unsatisfactory if it were incompatible
with FDT.

The aim of this paper is a thorough study of the Brownian gas, which is the zeroth-order
term of any perturbative expansion in the inter-particle potential. Here, the challenge posed by
the nonlinear symmetry is isolated from further complications due to the interactions, the origin
of the nonlinearity being purely entropic. The material is organized as follows: in section 1
we define the Brownian gas and compute exactly the spacetime dependence of all the n-point
correlation functions for the particle density. In section 2 we briefly review how to formulate
a path-integral description of the system and solve the field theory exactly, re-computing all
the n-point correlation functions in agreement with the results of section 1. Calculations with
field-theoretic methods are non-trivial since the Martin–Siggia–Rose (MSR) action describes
an interacting field theory, even though the original system contains non-interacting particles.
In section 3, we emphasize the role of the vertex in enforcing the constraint of a strictly
positive density field as opposed to a Gaussian free field. No coarse-graining procedure and
no cut-off scale are in principle necessary for a proper definition of the theory. A central,
non-perturbative result is the proof that the statistics of the ground state of the field theory
is Poissonian. In section 4, we compute the Jacobian of the nonlinear field transformation
and show explicitly how the n-point functions computed in the previous sections satisfy the
fluctuation–dissipation theorem associated with the time-reversal symmetry of the action.

1. The particle formalism

1.1. Brownian particles

In natural units (kB = 1 and drag coefficient γ = 1) the equation of motion for a Brownian
particle labeled by j moving in R

d is:

ẋj (t) = ηj (t). (1)
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ηj is a Gaussian white noise with probability distribution:

P[ηj ] ∝ e− 1
4T

∫
dtη2

j (t)

and correlators:

〈ηi,a(t)ηj,b(t
′)〉 = 2T δij δabδ(t − t ′)

where a and b label the vector components. The solution of equation (1) is

xj (t) = xj (0) +
∫ t

0
dt ′ηj (t

′). (2)

Note that for any j,�j (t) = xj (t) − xj (0) = ∫ t

0 dt ′ηj (t
′) is a Gaussian random variable.

Soon we will be interested in the value of 〈(�xa(t1) − �xb(t2))
2〉η, which can be easily

computed using:

〈�xi,a(t1)�xj,b(t2)〉η =
∫ t1

0
dt ′
∫ t2

0
dt ′′〈ηi,a(t

′)ηj,b(t
′′)〉η

=
∫ t1

0
dt ′
∫ t2

0
dt ′′2T δij δabδ(t

′ − t ′′) = 2T δij δab min(t1, t2). (3)

The result in (3) is non-vanishing only if �x’s relative to the same particle are considered and
finally:

〈(�xa(t1) − �xb(t2))
2〉η = 2T δab|t1 − t2|. (4)

1.2. The Brownian gas

The Brownian gas consists of N Brownian particles (1) confined in a d-dimensional box of
volume V with periodic boundary conditions. As usual, the thermodynamic limit is defined
as

V → ∞, N → ∞,
N

V
→ ρ0 = const. (5)

The free parameters describing the gas are its average density ρ0 and temperature T, or
equivalently the diffusion coefficient related to the temperature by the Einstein relation:
D = kBT

γ
. In natural units γ = 1 and kB = 1, so that D = T . The natural length

scale in the system is the average separation between particles, defined as λ = ρ
−1/d

0 . Also,
the well-known relation for diffusive processes 〈�x2〉 = 2D�t = 2T �t fixes the natural
time scale of the system to be τ = λ2

2T
. Once distances and time intervals are expressed in

these natural units, the Brownian gas becomes a parameter-free universal system.

1.3. Density correlations

The number density field �(x, t) is defined as

�(x, t) =
N∑

j=1

δ(x − xj (t)) or �k(t) = 1

V

N∑
j=1

eik·xj (t). (6)

We now compute the correlation of densities measured at n different points in space and time.
The average over initial conditions and realizations of the noise is fully deterministic and
represents, at least at equilibrium, the expected outcome of a measurement. The average over
the initial positions 〈. . .〉I.P . and the realizations of the noise 〈. . .〉η are defined in appendix A.
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The general structure of the following computations is:

• The position of each particle at time t depends both on the initial position and on the
realization of the associated noise. Using (2) the two contributions can be separated and
the averages over initial positions and noise realizations factorize.

• The average over initial conditions is computed using formula (A.1).
• The average over the noise is performed exploiting the standard relation 〈e−iψ 〉ψ =

e− 1
2 〈ψ2〉ψ , valid for any Gaussian random variable ψ with probability distribution

P[ψ] ∝ e− 1
2 ψ2

, and applying (3) and (4).

The final result for a generic connected n-point function is surprisingly compact and is
reported in formula (10).

1.3.1. 2-point functions. It is a simple exercise to verify that the 1-point function yields ρ0,
as expected from (5). Applying the steps described above, for the 2-point function we obtain

〈�(x1, t1)�(x2, t2)〉η,I.P . =
∑

k

(
eik·(x1−x2)

N

V 2
e−T k2|t1−t2|

)
+

N(N − 1)

V 2
.

The connected correlation function is

〈�(x1, t1)�(x2, t2)〉c = 〈�(x1, t1)�(x2, t2)〉η,I.P . − 〈�(x1, t1)〉η,I.P .〈�(x2, t2)〉η,I.P .

= N

V 2

(∑
k

eik·(x1−x2)e−T k2|t1−t2|
)

− N

V 2
.

In the continuum limit another factor of V appears in the numerator of the first term∑
k

= 1

�k

∑
k

�k → V

∫
ddk

(2π)d
(7)

which is then finite in the thermodynamic limit whereas the second term vanishes, being
suppressed by a factor 1

V
. In the thermodynamic limit the 2-point function is thus

〈�(x1, t1)�(x2, t2)〉c → ρ0

∫
ddk

(2π)d
eik·(x1−x2) e−T k2|t1−t2|

= ρ0
1

(4πT |t1 − t2|)d/2
exp

(
− (x1 − x2)

2

4T |t1 − t2|
)

.

1.3.2. 3-point functions. The computation of the 3-point function gives some further useful
insight. The generalization to an n-point function is then straightforward,

〈�(x1, t1)�(x2, t2)�(x3, t3)〉η,I.P .

=
∑

k1,k2,k3

eik1·x1 eik2·x2 eik3·x3
1

V 3
δk1+k2+k3N〈 e−ik1·�(t1)e−ik2·�(t2) e−ik3·�(t3)〉η

+

(∑
k2,k3

eik2·x2 eik3·x3
1

V 3
δk2+k3N(N − 1)〈e−ik2·�(t2) e−ik3·�(t3)〉η

+ (1 ↔ 2) + (1 ↔ 3)

)
+

1

V 3
N(N − 1)(N − 2).

Each term in the calculation above is associated with a connected or a disconnected correlation;
connected pieces represent single-particle self-correlations with which a formal ‘conservation
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of momentum’ rule is associated by formula (A.1). Again, the subtraction of disconnected
pieces removes, in the thermodynamic limit, all the terms except for the first one, which is the
only fully connected term.

1.3.3. n-point functions. A connected n-point correlation function can then be written in the
thermodynamic limit as:

〈�(x1, t1) · · · �(xn, tn)〉c =
∑

k1,···,kn

eik1·x1 · · · eikn·xn
N

V n
δk1+···+kn

〈�(k1, t1) · · · �(kn, tn)〉η,I.P . (8)

where 〈�(k1, t1) · · · �(kn, tn)〉η = 〈e−ik1·�(t1) · · · e−ikn·�(tn)〉η. After computing the average over
the noise, the general n-point correlation function is easily obtained:

〈�(k1, t1) · · · �(kn, tn)〉η = exp

⎛
⎝T

n∑
i<j

ki · kj |ti − tj |
⎞
⎠ . (9)

Note that δk1+···+kn
in (8) allows us to perform easily one of the sums over k and the other n− 1

summations give, in the continuum approximation, a factor V n−1 as in (7). Hence the whole
expression is proportional to ρ0 and it is finite in the thermodynamic limit:

〈�(x1, t1) · · · �(xn, tn)〉c
= ρ0

∫
ddk1

(2π)d
· · ·
∫

ddkn−1

(2π)d
eik1·(x1−xn) · · · eikn−1·(xn−1−xn) eT

∑n
i<j ki ·kj |ti−tj | (10)

with the constraint kn = −(k1 + · · · + kn−1) in the last exponential. The space and time-
translation invariance of the result are manifest.

As we have seen, the only finite contributions in the thermodynamic limit come
from single-particle self-correlations. The particles’ positions xj (t) obey the Langevin
equation (1) and the solutions are Gaussian random variables for which all the connected
moments 〈x(t1) · · · x(tn)〉c vanish if n > 2. It could be somewhat surprising to find non-
vanishing connected moments of the density for every n. The key point is that the density field
(6) is a function of the particle positions and a generic function of Gaussian random variables
does not have to be, and in this case is not, Gaussianly distributed.

2. The field-theoretic formalism

We now briefly review how to introduce a single differential equation with all the information
content of the system of Langevin equations describing the Brownian gas, and how to rephrase
it as a field theory.

2.1. Dean’s equation

The Brownian dynamics of a system of particles can be encoded in a stochastic ordinary
differential equation for each particle; since we consider the non-interacting case only, the
equations are naturally decoupled:

ẋj (t) = ηj (t); j = 1, . . . , N.

Defining the density field as in (6), the system of equations can be formally translated into
Dean’s equation (11), which is the corresponding partial differential equation governing the
evolution of the density field:

∂t� = ∇ · (ξ
√

�) + T ∇2�. (11)

5
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In the process, the N independent noises ηj (t) have been turned into a single vector field
ξ(x, t) with self-correlation:

〈ξa(x, t)ξb(x
′, t ′)〉 = 2T δabδ(t − t ′)δ(x − x ′).

Since in (11) the noise multiplies the density field, the differential equation becomes a
meaningful string of symbols only once a proper interpretation for the noise term is given
[8]. We adopt the Itô prescription, which implies a trivial Jacobian [5] for the path-integral in
(13).

It should be stressed that, due to the singular nature of the density field, the natural setting
of Dean’s equation is a distribution space. In such a setting the equation has been derived
exactly, without any coarse-graining assumptions or cut-off scales which are by no means
necessary to obtain the differential equation [2].

2.2. The MSR action and the Feynman rules

2.2.1. The MSR procedure. Through a formal procedure first devised by Janssen [9] following
Martin, Siggia and Rose (MSR) [10], a stochastic differential equation can be recast into a field
theory defined by a functional integral. The basic idea is to impose the original equation of
motion for the density field ρ by introducing a new field iφ̂ as a Lagrange multiplier, whereas
the noise is integrated out exploiting its Gaussian measure.

After introducing for convenience a shifted density field with a vanishing average5,

�(
x, t) = ρ0 + ρ(
x, t) s.t. 〈�(x, t)〉 = ρ0, 〈ρ(
x, t)〉 = 0 (12)

the analytic expression of the MSR generating functional is:

Z =
∫

Dφ̂Dρ eS (13)

with action:

S =
∫

ddx dt{iφ̂[∂tρ − T ∇2ρ] + Tρ0[∇iφ̂]2 + Tρ[∇iφ̂]2}. (14)

The time integration in (14) extends from −∞ to +∞ or, equivalently, the initial conditions
are shifted to the infinite past: due to the dissipative dynamics, the ground-state of the theory
describes then the equilibrated system, forgetful of any initial condition. We do not specify
instead the functional domain over which the path integrals in (13) are computed and proceed
formally: the functional integrals are regarded as formal series of Gaussian integrals computed
over unconstrained (i.e. positive and negative) fields whereas, in principle, the integral over ρ

should be restricted to sums of δ’s only, as the form of the density field in (6) would suggest.
The exact match of the results we will obtain with the ones calculated in the particle formalism
justifies a posteriori such an approach, emphasizing the role of the auxiliary field iφ̂ and of
the vertex in imposing the equation of motion (11) and enforcing the positivity of the density
field.

5 The spatial average is always well defined, being one of the parameters defining the thermodynamic limit. At
equilibrium we expect it to be equivalent to a temporal average at a fixed position and also to an average over the
noise histories at fixed position and time.
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2.2.2. Feynman rules. For the following analysis it will be convenient to work in a
representation involving times t and momenta k. Introducing the time-ordering convention to
write earlier fields to the right of later fields, the appropriate Feynman rules are then:

ρρ (k, t) = ρ0e
−T k2 |t|

iφ̂ρ (k, t) = θ(−t)e+T k2 t

ρiφ̂ (k, t) = θ(t)e−T k2 t

iφ̂iφ̂ (k, t) = 0

−2Tk1 · k2·

The dotted edges on the vertex indicate the action of spatial derivatives. All the momenta are
considered positive when incoming in the vertex.

The propagator 〈ρρ〉 is the density–density correlator and we will refer to the propagators
〈iφ̂ρ〉 and 〈ρiφ̂〉 as the advanced and retarded response functions respectively. It is worth
emphasizing that such terminology would be appropriate only in the case of Langevin equations
with additive noise, for which the occurrence of iφ̂ in a field-theoretic expectation value can
be proven to represent the linear response to the variation of a chemical potential µ coupled to
the density field. For the MSR field theory associated with Dean’s equation, instead, response
functions are characterized not by iφ̂ but by the composite operator ∇ · (�∇iφ̂) as we will
show in section 4.1. Yet, for simplicity, in the following we will refer to the pseudo-response
functions 〈iφ̂ρ〉 and 〈ρiφ̂〉 as ‘response functions’ tout court.

2.2.3. Diagrammatics. Although corresponding to a non-interacting particle system, the
action (14) has a vertex and the field theory is non-Gaussian. The study of the gas is
nevertheless easier than the interacting case since all loop diagrams vanish because of causality,
as the following example, easily generalizable to arbitrary n-point functions, illustrates:

t1

t2
t3

Labeling t1, t2 and t3 the vertices of the triangle, the θ -functions in the propagators impose:
t1 � t2, t2 � t3 and t3 � t1. Such constraints can be satisfied only by t1 = t2 = t3, with a
vanishing volume in phase space. Hence, only tree diagrams yield non-vanishing amplitudes
and such a simplification which will allow us to compute exactly all the correlation functions.

The structure of the vertex implies that among the edges of a tree there is one and only one
correlation-like propagator, all the other propagators being response-like. The identity below
allows us to express a correlation-like propagator as a sum of two response-like propagators:

〈ρρ〉(k, t) = ρ0 e−T k2|t | = ρ0
[
θ(t) e−T k2t + θ(−t) eT k2t

]
= ρ0[〈ρiφ̂〉(k, t) + 〈iφ̂ρ〉(k, t)] (15)

Graphically: → ρ0( + ).
.

7
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Using relation (15), each diagram can be decomposed into the sum of two simpler diagrams
in which all the propagators are response-like: causality, encoded through the θ(t) functions
in the Feynman rules, endows the response-like propagators with a natural orientation so that
the concept of ‘earlier vertex’ is well-defined. The above decomposition leads also to the
appearance of vertices with three dashed legs whose properties are discussed in section 2.4.

After applying the decomposition (15) the diagrams contributing to a correlation function
can be divided into two subsets:

• c-diagrams: all the external lines are solid lines or, equivalently, one of the vertices has
three dashed legs.

• r-diagrams: one of the external lines is a dashed line or, equivalently, all the vertices are
of the kind depicted in the Feynman rules of section 2.2.2.

Indicating by C and R the sum of all the c-diagrams and r-diagrams respectively, we have:

• Response functions = R
• Correlation functions = C + R

In the next section we will develop a computational scheme for calculating all the diagrams
of the theory and, after summing together the appropriate contributions, we will give explicit
analytic expressions for the generic n-point density correlations. In order to simplify the
notation, the temperature will be set to one in the following (T = 1) and it will be easily
reintroduced in the final result (35).

2.3. Computation of all the r-diagrams

r-diagrams can be immediately mapped to binary rooted trees by considering the propagator
with the external dashed line as the root of the tree. Before confronting the general case it is
instructive to compute explicitly the first few r-diagrams to better understand and appreciate the
combinatorial approach developed in section 2.3.4. The hasty reader might want to continue
there directly.

Conventions:
t1 < t2 < · · · < tn−1 < tn
mab...yz := min (ta, tb, . . . , ty, tz)

2.3.1. 3-point. Applying the Feynman rules and constraining the integration domain
according to causality:

1

2 3

R3(1, 2, 3) =
∫ m23

t1

dt̄ (−2k2 · k3) e−k2
1 (t̄−t1) e−k2

2(t2−t̄ ) e−k2
3 (t3−t̄ )

= e−k2
1 (m23−t1)−k2

2(t2−m23)−k2
3(t3−m23) − e−k2

2 (t2−t1)−k2
3(t3−t1) (16)

where conservation of momentum: −k2
1 + k2

2 + k2
3 = −2k2 · k3 has been used.

As explained below, the result can be depicted as:

R3 = −
2
1

2 3

1

2 3
(17)

8
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In the following we will be careful with the terminology, calling ‘diagrams’ the usual Feynman
diagrams [11], mapped to integrals by the Feynman rules, and ‘graphs’ the objects of the kind
drawn in (17), which are a graphical representation of the result of such integrals.

The crucial property of such a graphical representation is that the group of permutation of
labels under which the exponentials in an analytic term are invariant is isomorphic to the group
of topologically equivalent relabelings of the associated graph. As we will see starting from the
computation of the 4-point r-function, the graphical approach greatly eases the bookkeeping.

The rules for drawing a graph given the result of the integrations are very simple:

• With each term of the form e−k2
j (a−b) associate two vertices labeled ‘a’ and ‘b’ linked by

a line. The edge should be labeled by k2
j , yet we will avoid doing so since the labels for

the edges of a graph can be easily guessed considering the momenta labelling the original
Feynman diagram and the contractions to obtain the graph.

• Identify all the vertices with the same label

Note that no loops are generated as a consequence of the tree-like structure of the original
Feynman diagrams and tadpoles are naturally removed since a = b implies e−k2

j (a−b) = 1.
Recovering an analytic expression given a labeled graph is an obvious procedure.
Our graphical convention is to orient both, diagrams and graphs, in such a way that the

arrow of time points toward the bottom of the page. Then, the label mab...yz associated with
the vertex of a graph is the time labeling the earliest of the underlying leaves.

2.3.2. 4-point. The 4-point r-function can be easily computed from the result of the 3-point
r-function:

1

2

A

3 4

r4(1, 2, 3, 4) =
∫ m234

t1

dt̄ (+2k2 · kA) e−k2
1 (t̄−t1) e−k2

2(t2−t̄ )R3(A, 3, 4)

= e−k2
1 (m234−t1)−k2

2(t2−m234)−k2
A(m34−m234)−k2

3(t3−m34)−k2
4(t4−m34)

− e−k2
2 (t2−t1)−k2

A(m34−t1)−k2
3(t3−m34)−k2

4(t4−m34)

− 2k2 · kA(− k2
1 + k2

2 + k2
3 + k2

4

) e−k2
1 (m234−t1)−k2

2(t2−m234)−k2
3(t3−m234)−k2

4(t4−m234)

+
2k2 · kA(− k2

1 + k2
2 + k2

3 + k2
4

) e−k2
2 (t2−t1)−k2

3(t3−t1)−k2
4(t4−t1) (18)

where kA = k1 + k2 = −(k3 + k4). In the last two terms of the result, rational functions of
the external momenta make their first appearance. The exponentials and the denominators in
the last two lines are independent of the permutation of labels {2, 3, 4} and since the interest
is eventually in the sum over all the topologically distinct permutations, we add together the
numerators of the rational expressions; due care should be taken since kA does depend on the
particular permutation and the kA’s relative to different permutations need to be distinguished:

2(k2 · kA + k3 · kA′ + k4 · kA′′) = 2(k2 · (k1 + k2) + k3 · (k1 + k3) + k4 · (k1 + k4))

= 2
(
k2

2 + k2
3 + k2

4 + k1(k2 + k3 + k4)
) = 2

(− k2
1 + k2

2 + k2
3 + k2

4

)
. (19)

9
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Simplifying the denominators, both rational expressions disappear, leaving a factor of 2. The
final result has then the following representation, the capital ‘R’ in R4 representing the sum
over all the possible labelings of all the r-diagrams:

R4 =
T I

− − 2 + 2 (20)

∑
T I is a sum over all the topologically inequivalent relabelings of the graphs. Note that

the property of two labelings of being TI (topologically inequivalent) or TE (topologically
equivalent) depends on the particular graph. The first two graphs in (20) need to be summed
over the 3 TI permutations of external labels {2, 3, 4} (‘1’ being always fixed since any r-
diagram vanishes unless the external dashed line is associated with the earliest time). The
last two graphs do not need any further treatment or, equivalently, the three possible labelings
are topologically equivalent and they have been summed over already to replace the rational
functions with the integer ‘2’.

2.3.3. 5-point. In this example one last complication, given by the existence of several
topologies of binary trees with the same number of external legs, needs to be faced. In order
to remove the rational functions it is required to sum not only over the permutations of labels,
as before, but also over the possible topologies of trees. Note that in this context diagrams
with the same topology but whose propagators have different orientations are considered
topologically distinct and they are mapped to different binary rooted trees, namely 5a and 5b
below.

Topology a:

1

2

B

3

A

4 5

r5a(1, 2, 3, 4, 5) =
∫ m2345

t1

dt̄ (+2k2 · kB)e−k2
1(t̄−t1)e−k2

2(t2−t̄ )r4(B, 3, 4, 5)

=

1
2

2 3
3

4
4 5

−

1

2
3

3 4
4 5

− A1

1
2

2 3 4

4 5
+ A1

1

2 3
4

4 5

− A2

1
2

2 3

3 4 5
+ A2

1

2 3

3 4 5
+ A3

1
2

2 3 4 5
− A3

1

2 3 4 5

(21)

10
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where:

A1 = 2k2 · kB

−k2
1 + k2

2 + k2
3 + k2

A

A2 = 2k3 · kA

−k2
B + k2

3 + k2
4 + k2

5 (22)
A3 = A2

2k2 · kB

−k2
1 + k2

2 + k2
3 + k2

4 + k2
5

Topology b:

1

2

C

3

A

4 5

r5b(5, 4, 3, 2, 1) =
∫ m2345

t1

dt̄ (−2kA · kC)e−k2
1(t̄−t1)R3(C, 2, 3)R3(A, 4, 5)

=

1
2

2 4
2 34 5

−
1

2 4
2 34 5

− B1

1
2

2 3 4

4 5
+ B1

1

2 3
4

4 5

− B2

1
2

4 5 2

2 3
+ B2

1

4 5 2

2 3
+ B3

1
2

2 3 4 5
− B3

1

2 3 4 5

(23)

where:

B1 = −2kA · kC

−k2
1 + k2

2 + k2
3 + k2

A

B2 = −2kA · kC

−k2
1 + k2

4 + k2
5 + k2

C (24)
B3 = −2kA · kC

−k2
1 + k2

2 + k2
3 + k2

4 + k2
5

.

In the following, with 5a,nth and 5b,nth we will refer to the nth graph appearing in (21) and (23)
respectively.

A subtlety
The group G5a of TI relabelings for Feynman diagram 5a contains 12 elements and induces
12 relabelings for the graphs in (21). For each graph in (21) we can factorize G5a as a product
of TI and TE relabelings, the factorization depending on the particular graph considered. The
factorization is possible since the graphs generated by contracting edges in diagram 5a have
a higher symmetry than the diagram itself. Unfortunately this is not always the case; in fact,
Feynman diagram 5b has only 3 TI relabelings. However some of the graphs in (23), namely
5b,3rd, 5b,4th, 5b,5rd and 5b,6th, admit 6 TI relabelings since the edge contractions have lowered
the symmetry of 5b. Nevertheless, the troublesome graphs appear in pairs ({5b,3rd, 5b,5th} and
{5b,4rd, 5b,6th}) so that G5b induces 3 relabelings on each of them for a total of 6 relabelings
associated with each topology. The 3 elements in G5b are thus enough to induce all the TI
relabelings for any graph in (23). In general, whenever the contractions reduce the symmetry

11
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factor of a diagram by a factor n, n copies of the same graph appear, so that the TI labelings
of the original diagram are sufficient to induce all the possible TI labelings for the topology of
the graph. This is a general phenomenon deriving from the fact that the graphs are decorations
of the underlying tree structure determined by the Feynman diagrams.

The results for diagrams 5a and 5b ((21) and (23) respectively) contain
several graphs with the same topology: examples of such terms are {5a,3rd, 5b,3rd,

5b,5th}, {5a,4th, 5b,4th, 5b,6th}, {5a,7th, 5b,7th} and {5a,8th, 5b,8th}. A labeled graph fully determines
the exponentials of the analytic expressions, which are invariant under the TE relabelings of
the graph. Instead, the rational functions in (22) and (24) do depend on the labeling. As for
the 4-point function in (19), by summing over all the TE relabelings for each graph we now
replace the rational functions in (21) and (23) with integer numbers. The computations
are straightforward and can be summarized as follows: for the topology of the groups
{5a,3rd, 5b,3rd, 5b,5th} and {5a,4th, 5b,4th, 5b,6th} the Feynman diagram 5a induces 12 labelings
and 5b induces 6. The sum over the 18 labelings yields a factor of 2. For the topology of
the groups {5a,7th, 5b,7th} and {5a,8th, 5b,8th} the sum over the 12 + 3 induced labelings yields
a factor of 6. Finally, the result can be expressed in terms of a linear combination of graphs
with integer coefficients, summed over TI relabelings only:

R5 = R5a + R5b =
T I

− + −

− 2 + 2 − 2 + 2 + 6 − 6 . (25)

2.3.4. n-point. The previous sections clearly show that the amount of combinatorics required
to compute higher order r-functions rapidly becomes prohibitive and we need to automate the
computation of n-point diagrams. This can be achieved in two steps: first, starting from a
Feynman diagram, generate all the topologies of the relevant graphs, and second, associate with
each graph the appropriate combinatorial integer factor. Indeed, given an n-point Feynman
r-diagram, X, there is no need to apply the Feynman rules, perform explicitly the computation
and then draw the corresponding graphs. Instead, the graphs representing the result are readily
obtained by the following procedure:

• Consider all the graphs drawn after contracting m (m = 0, . . . , n − 2) among the
contractible edges of X, where a ‘contractible edge’ is defined to be either an internal
edge or the external edge labeled by the earliest time (which in the r-graphs is always
drawn as the uppermost edge, with the appearance a stalk).

• Multiply each graph by a factor (−1)m.
• With each vertex with l dangling lines associate a factor Rl = (l − 1)!. The integer

factor associated with the graph is then the product of all the coefficients associated to its
vertices. When considering an explicit labeling, the label associated to a branching is the
smallest (earliest) label of its descendant leaves.

• Sum each graph over its topologically inequivalent (TI) labelings.

The first two rules follow naturally from an iterative application of the fundamental
theorem of calculus:

∫ b

a
dtf (t) = F(b) − F(a). In fact, an integral over time is associated

to each vertex of a Feynman diagram and the evaluation of the primitive at the integration
boundaries determines the sign and the survival or the contraction of the edge in a graph. The

12
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third prescription depends on the specific form of the Feynman rules and its proof is reported
in appendix B.1. All the above prescriptions should be familiar after working out explicitly
the analytic computation of the 3, 4, and 5-point functions of the previous sections.

The next section aims at motivating one further prescription and at showing explicitly the
remaining steps for the calculation of density correlation functions. Some readers might want
to go directly to section 2.4.4.

2.4. Computation of all the c-diagrams

In section 2.2.3, we have defined the c-diagrams and noted the appearance of a new vertex
with three dashed legs which was not explicitly present in the action (14). We recall that the
new vertex is a consequence of the application of the decomposition (15). After summing
over the three possible ways of orienting the original r-vertices, or, equivalently, of distributing
derivatives marked as dots on the edges, it is convenient to introduce such a vertex, called
c-vertex, as a new effective Feynman rule:

= + +

with analytic expression:

− 2k1 · k2 − 2k1 · k3 − 2k2 · k3 = 2k2
1 + 2k2

2 + 2k1 · k2 = k2
1 + k2

2 + k2
3 . (26)

It is easy to prove that the Feynman diagrams generated with the original Feynman rules of
section (2.2.2) and the decomposition (15) are the same as the ones generated with a new
set of Feynman rules consisting of an r-vertex, a c-vertex and response-like propagators only.
Diagrams generated only with r-vertices are r-diagrams; the ones in which one c-vertex is
present are c-diagrams.

The application of the Feynman rules is straightforward and the computations of the
integrals are very similar to the ones for the r-functions. We just report some results,
emphasizing the differences with the previous calculations.

2.4.1. 3-point.

1 2 3

c3(1, 2, 3) =
∫ m123

−∞
dt̄
(
k2

1 + k2
2 + k2

3

)
e−k2

1 (t1−t̄ ) e−k2
2 (t2−t̄ ) e−k2

3(t3−t̄ )

= e−k2
1(t1−m123)−k2

2(t2−m123)−k2
3(t3−m123) (27)

Note the different integration domains in comparison with (16). The graphical representation
of (27) is:

C3(1, 2, 3) =
1

1 2 3

The which marks the c-vertex is just a bookkeeping symbol whose importance will be clear
soon.

We are eventually interested in the computation of the 3-point connected density
correlation function which is the sum of the 3-point r-function and c-function. Indicating

13
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as usual with capital letters the sum over topologically inequivalent relabelings (in this case
just one), the graphical result is:

(k1, t1) (k2, t2) (k3, t3) c = R3 + C3 =

1
2

2 3
−

1

2 3
+

1

1 2 3
=

1
2
3

where we have crossed the edges to be removed when applying the contraction rule for edges
with the same label, as described in section 2.3.1. Finally, the last two graphs cancel each
other as can be explicitly noted comparing (16) and (27), the being irrelevant in this context.
In the result, the vertices of the ladder graph are pinpointed for clarity by black dots.

2.4.2. 4-point. Other n-point functions with n > 3 can be generated recursively from one
c-vertex and appropriate combinations of r-functions. For the 4-point c-function we have:

1 2

A

3 4

c4(1, 2, 3, 4) =
∫ m1234

−∞
dt̄
(
k2

1 + k2
2 + k2

A

)
e−k2

1 (t1−t̄ ) e−k2
2(t2−t̄ )r3(A, 3, 4)

= e−k2
1 (t1−m1234)−k2

2(t2−m1234)−k2
A(m34−m1234)−k2

3(t3−m34)−k2
4(t4−m34)

− k2
1 + k2

2 + k2
A(

k2
1 + k2

2 + k2
3 + k2

4

)e−k2
1(t1−m1234)−k2

2(t2−m1234)−k2
3(t3−m1234)−k2

4(t4−m1234) (28)

or, graphically:

c4(1, 2, 3, 4) =

1

2 3 4

4 5
− C

1

2 3 4 5
(29)

where:

C = k2
1 + k2

2 + k2
A(

k2
1 + k2

2 + k2
3 + k2

4

) . (30)

The Feynman diagram admits 6 TI permutations: differently from the case of the 4-point
r-function, the allowed permutations for the 4-point c-function involve all the labels {1, 2, 3, 4}.
The exponential in the second term of (28) is invariant under such relabelings (or, equivalently,
the relabelings are TE for the second graph in (29)). Since the denominator of C is also invariant,
we can just add together the numerators corresponding to different labelings. Rewriting(
k2

1 + k2
2 + k2

A

)
as
(
2k2

1 + 2k2
2 + 2k1 · k2

)
and summing over the 6 relabelings:(

2k2
3 + 2k2

4 + 2k3 · k4
)

+
(
2k2

1 + 2k2
2 + 2k1 · k2

)
+
(
2k2

1 + 2k2
3 + 2k1 · k3

)
+
(
2k2

1 + 2k2
4 + 2k1 · k4

)
+
(
2k2

2 + 2k2
3 + 2k2 · k3

)
+
(
2k2

2 + 2k2
4 + 2k2 · k4

)
= 5

(
k2

1 + k2
2 + k2

3 + k2
4

)
.

After the sum, the rational function is replaced by a factor of 5. It is clear that the new vertex
generates combinatorial factors different from what we calculated for the r-functions and

this justifies a new graphical symbol for it.
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The final result for the 4-point c-function is:

C4 =
T I

− 5 . (31)

In order to obtain the 4-point connected density correlation function we add together (20) and
(31):

(k1, t1) (k2, t2) (k3, t3) (k4, t4) c =
T I

−
.

− 2 + 2 + − 5 =

1
2
3
4

The reader is invited to perform the simple sum over the TI relabelings and verify explicitly
that, the result for the density correlator is again a ladder graph.

2.4.3. 5-point. The general mechanism should be clear by now. As before, for the 5-point
functions two topologies are present. We only report the final result, after summing over the
two topologies and all the TE relabelings for each graph:

C = C5a + C5b =
T I

+ − 5 − 2 + 26

(32)

Note that the factor of 2 associated with the fourth term of the rhs is a (3 − 1)! from the
sub-tree with 3 dangling lines. Moreover, an interesting pattern 1, 5, 26, . . . appears for the
integers associated to a c-vertex with l dangling lines. In appendix B.2 it will be identified
with the sequence of generalized Stirling numbers (Sloane A001705 [12]).

Verifying that the sum of (25) and (32) yields the 5-vertex ladder graph is a lengthy but
rewarding exercise. In appendix C.1 it is proven for general n-point functions that such ladder
graphs are the graphical representation of the very same analytic result obtained in (9) with
the particle formalism.

2.4.4. n-point. The general recipe of section 2.3.4 for generating graphs with their integer
coefficient can now be complemented with a new prescription:

• With each c-vertex with l dangling lines associate a factor Cl = Sl−2, where Sl is the lth
generalized Stirling number (see appendix B.2 for a proof). The c-vertex is labeled by
‘1’, being always the earliest vertex in a Feynman diagram.

2.5. Graph cancellations

Up to this point we have computed all the r-diagrams and all the c-diagrams writing them as
sums over topologically inequivalent labeling of graphs. At least in the simplest examples,
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after combining them to compute an n-point density correlation function, we have shown that
the result is extremely simple, namely a ladder graph, i.e. a single time-ordered labeling of a
single graph, as displayed in (33). The equivalence of the analytic expression corresponding
to the ladder graphs and the result for the n-point density correlation function computed with
the particle formalism in (9) is explicitly shown in appendix C.1.

1
2

2 3
→

1

2

3 ;

1
2

2 3

3 4
→

1
2
3
4 ;

1
2

2 3
3 4
4 5

→

1
2
3
4
5 ; . . .. (33)

Indeed, for every n-point function the same cancellations seen in the examples above occur,
causing the sum of all the graphs generated from the r-functions and the c-functions to vanish,
with the only exception of ladder graphs. Let us partition the graphs generated by the graphical
procedure into three classes: r-graphs with a stalk, r-graphs without a stalk and c-graphs. In
the figure below we report the example of the 5-point correlation function:

+ − 2 − 2 + 6

∪ − − + 2 + 2 − 6

∪ + − 5 − 2 + 26 (34)

It can be proven that r-graphs without a stalk completely cancel the c-graphs (appendix C.3)
and that r-graphs with a stalk cancel one another with the exception of the ladder graph
(appendix C.2). These facts lead us to the following grand result, sealing the identity between
the particle (9) and field-theoretic approaches:

(k1, t1) (kn, tn) c =

1
2

n = ρ0δ(k1 + + kn) exp T

n

i<j

ki · kj |ti − tj |

(35)

where the last term has been complemented with a factor ρ0(2π)dδ(k1 + · · · + kn), ρ0 coming
from the decomposition (15) and the δ originating from the global conservation of momentum
associated with the Feynman diagrams.

3. The Poissonian distribution and a remark on coarse-graining

After Fourier-transforming (35), the analytic expression for an n-point density correlation
function in direct space is identical to (10): it follows then that the equal-time limit of an
n-point function is ρ0δ(x1 − xn) . . . δ(xn−1 − xn). At equal times the density field is thus
delta-correlated in space, as expected for a non-relativistic theory which is both causal and
local.
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Let us consider the probability distribution function (PDF) for the equilibrium density
measured at a single point in spacetime: the equal-time limit of an n-point function is the nth
moment of such a PDF. Since a probability distribution is uniquely determined by its moments
and we know from (35) that all the cumulants are equal to ρ0, it follows immediately that
the PDF of the local density is a Poissonian distribution with average equal to ρ0. Whereas
this statement is obvious when considered from a particle viewpoint, it is highly non-trivial
from a field-theoretic perspective, involving the resummation of an infinite class of Feynman
diagrams.

For an infinite system, λ = ρ
−1/d

0 is the only natural length-scale. In principle, we may
want to introduce by hand a second length-scale l, which could be a standard unit of length (e.g.
1 cm) or being imposed by the spatial resolution of an experiment. Then, ρ0 can be considered
as a free parameter. In the large ρ0 limit the Poisson distribution is well approximated by a
Gaussian with average ρ0 and standard deviation σ = √

ρ0. More precisely, when measured
at macroscopic spacetime intervals, the 1-point function is ρ0 � 1, the 2-point functions are
O(1) and all higher n-point functions are suppressed, being O

(
1
/
ρn−2

0

)
. Hence, the effective

behavior of the system can be approximated by a free field theory.
Yet, for ρ0 � 1, the Poisson distribution is markedly different from a Gaussian6: the

hypothetical experiment is probing the system down to length-scales at which the granularity
of the gas is manifest. The vertex appearing in the field theory, which faithfully reproduces
the Poissonian statistics, is then the vestige of the particle nature of the gas. Its relevance is
crucial at low densities where the free particle system is described by a strongly interacting
field theory. Note that the length-scale λ merely identifies the cross-over between ‘free’ and
interacting theory but by no means it represents a hard cutoff scale for the system. Again,
any coarse-graining procedure would be purely arbitrary, the field theory being well-defined
at any length-scale.

4. Time-reversal symmetry and fluctuation–dissipation theorem

This last section contains a brief review of the time-reversal symmetry of the action first
discussed in [5] and the fluctuation–dissipation relation it implies. Also, we will finally focus
on the mechanism through which the symmetry is enforced at the level of correlation functions.

The path integral (13) and the action (14) define the field theory for the Brownian gas.
The corresponding equation of motion for the physical field � is Dean’s equation (11) and it
can be interpreted as a continuity equation for the density:

∂t� = ∇ · j with current: j = −ξ
√

� − T ∇�.

4.1. Response functions

An external force f (x) acting on the density field shifts the current:

j (x) → j (x) + ρ(x)f (x) = j (x) − ρ(x)∇µ(x)

the last equality being meaningful only if f is exact and a scalar potential µ can be defined:
f (x) = −∇µ(x). Dean’s equation can then be written as:

∂t� = ∇ · (ξ
√

�) + T ∇2� + ∇ · (�∇µ)

= ∇ · (ξ
√

�) + ∇ ·
(

�∇ δF

δ�

)
6 No inter-particle potential would ever give rise to a genuine free field theory: in that case, in fact, the PDF for the
density would be a Gaussian and the density field would not be positive definite.
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where the free energy functional F is defined as:

F [�] =
∫

ddx

[
T �(x, t)

(
ln

�(x, t)

ρ0
− 1

)
+ µ(x, t)�(x, t)

]
.

The physical interpretation of µ as a chemical potential field linearly coupled to the density is
now fully transparent. Notably, however, in the field theory µ appears in a term of the MSR
action which is not quadratic in the fields:

S =
∫

ddx dt{iφ̂(x, t)[∂t�(x, t) − T ∇2�(x, t) − ∇ · (�∇µ)] + T �(x, t)[∇iφ̂(x, t)]2}.
(36)

We are now interested in the linear response of a generic local functional of the density � to
the external field µ, which is defined as

RA(x, x ′; t, t ′) ≡
〈
δA[�](x, t)

δµ(x ′, t ′)

〉
µ

∣∣∣∣∣
µ=0

.

Integrating (36) by parts and taking the functional derivative of the generating functional with
respect to µ yields the field-theoretic expectation value:

RA(x, x ′; t, t ′) = 〈A[�](x, t)∇ · [(∇iφ̂)�](x ′, t ′)〉. (37)

The particular case A[�] = � makes explicit the distinction mentioned at the end of
section 2.2.2 between the actual response function 〈ρ(x, t)∇·[(∇iφ̂)�](x ′, t ′)〉 and the pseudo-
response functions given by the propagators 〈iφ̂(x ′, t ′)ρ(x, t)〉 and 〈ρ(x, t)iφ̂(x ′, t ′)〉. We now
show how a symmetry of the action implies the fluctuation–dissipation theorem involving the
proper response function defined in (37).

4.2. Symmetry of the action

The action (14) is invariant, modulo total derivatives, under the time-reversal transformation
T , implemented as:

T :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t → τ = −t

ρ(x, t) → ρ(x, τ )

∂tρ(x, t) → −∂τρ(x, τ )

iφ̂(x, t) → −iφ̂(x, τ ) − ln
�(x, τ )

ρ0
.

In general, the invariance of the action under a field transformation is not sufficient to guarantee
that such a transformation is a symmetry: in fact, a nonlinear field redefinition might lead to
a non-trivial Jacobian. We now argue that, although the transformation (38) is nonlinear, its
Jacobian is just a simple constant. Consider a finite system with discretized space: a field
configuration is then defined by a 2N -vector v = (iφ̂1, . . . , iφ̂N ; ρ1, . . . , ρN) and the Jacobian
matrix J associated with (38) is:

Ji,j = ∂(T v)i

∂vj

=
(

A B

C D

)
with:

A = −IN×N, B = −

⎛
⎜⎝

ρ−1
1 0 0

0
. . . 0

0 0 ρ−1
N

⎞
⎟⎠ , C = 0N×N, D = IN×N .
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Since J is block triangular, |det(J )| = |det(A) det(D)| = |±1| and (38) is indeed a symmetry
of the field theory.

The study of correlation functions is easier in Fourier space. The action (14) can then be
rewritten as:

S =
∫

k,t

{
[iφ̂(k, t)∂tρ(−k, t)] −

[
iφ̂(k, t)

∫
k′

1

T
Q(k, k′, t)

δF

δρ(k′, t)

]

−
[

iφ̂(k, t)

∫
k′

Q(k, k′, t)iφ̂(k′, t)
]}

where:
∫
k

≡ ∫
dd k

(2π)d
and

∫
t
≡ ∫

dt . The integral kernel Q is defined as:

Q(k, k′, t) = T k · k′ρ(−k − k′, t) (38)

and Q−1 is such that∫
k′

Q(k, k′, t)Q−1(k′, k′′, t) = δ(k − k′′).

The time-reversal symmetry can now be implemented as:

T :

⎧⎪⎪⎨
⎪⎪⎩

t → τ = −t

ρ(k, t) → ρ(k, τ )

∂tρ(k, t) → −∂τρ(k, τ )

iφ̂(k, t) → −iφ̂(k, τ ) − ∫
k′′ Q

−1(k, k′′, t)∂τρ(−k′′, τ )

where the last line can also be expressed as:∫
k′

Q(k, k′, t)iφ̂(k′, t) → −
∫

k′
Q(k, k′, t)iφ̂(k′, τ ) − ∂τρ(−k, τ ).

Note that
∫
k′ Q(k, k′, t)iφ̂(k′, t) is nothing but the Fourier-transformed version of the composite

operator ∇ · [(∇iφ̂)�] appearing in (37). The FDT associated with any observable A is then:∫
k′
〈A(k, t)Q(k, k′, t ′)iφ̂(k′, t ′)〉 T−→

T−→ −
∫

k′
〈A(k, τ )Q(k, k′, τ ′)iφ̂(k′, τ ′)〉 − ∂τ ′ 〈A(k, τ )ρ(−k, τ ′)〉. (39)

In particular, we can consider A ≡ ρ and t ′ < t so that one of the response terms vanishes
because of causality. Assuming time-translation and time-reflection invariance, properties
which are certainly true at equilibrium, we finally obtain the FDT:∫

k′
T k · k′〈ρ(k, t)ρ(−k − k′, t ′)iφ̂(k′, t ′)〉 = ∂t ′ 〈ρ(k, t)ρ(−k, t ′)〉. (40)

A few general properties useful in the following computations are:

• All the FDT’s written above hold only once the sum of connected and disconnected
correlators is considered.

• For the gas, any correlator containing more than one iφ̂ field vanishes.
• 〈iφ̂〉 ≡ 0.
• Each connected n-point function (n > 2) involving a field iφ̂ evaluated at the same time as

another field ρ is identically zero. This can be easily argued from the integration domains
in (16), (18), (25) which vanish if m2...n = t1 whereas the integrand is a continuous
function.
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Verifying (40) with A ≡ ρ using the Feynman rules for the propagators is a simple
exercise, yielding:

−T k2ρ0 e−T k2(t−t ′)θ(t − t ′) = +T k2ρ0 e−T k2(t ′−t)θ(t ′ − t) − T k2ρ0 e−T k2|t−t ′| sgn(t ′ − t).

When computing explicitly (39) in the case A ≡ ρρ or higher powers of ρ interesting
cancellations occur between different disconnected correlators. Let us consider the simplest
case (assuming t1 < t2 < t3):∫

k′
〈ρ(k3, t3)ρ(k2, t2)Q(k2 + k3, k

′, t1)iφ̂(k′, t1)〉 = ∂τ1〈ρ(k3, τ3)ρ(k2, τ2)ρ(−k3 − k4, τ1)〉.
After substituting (38) and expanding in the non-vanishing disconnected parts, the formula
above can be written in short-hand notation as:∫

k′
T (k2 + k3) · k′(〈ρ3ρ2iφ̂1〉c〈ρ1〉 + 〈ρ3iφ̂1〉c〈ρ2ρ1〉c

+ 〈ρ2iφ̂1〉c〈ρ3ρ1〉c + 〈ρ3iφ̂1〉c〈ρ2〉〈ρ1〉 + 〈ρ2iφ̂1〉c〈ρ3〉〈ρ1〉)
= ∂τ1(〈ρ3ρ2ρ1〉c + 〈ρ3ρ1〉c〈ρ2〉 + 〈ρ2ρ1〉c〈ρ3〉). (41)

In particular we now show that the following equality holds:∫
k′

T (k2 + k3) · k′(〈ρ3ρ2iφ̂1〉c〈ρ1〉 + 〈ρ3iφ̂1〉c〈ρ2ρ1〉c + 〈ρ2iφ̂1〉c〈ρ3ρ1〉c) = ∂τ1〈ρ3ρ2ρ1〉c.
(42)

The remaining terms appearing in (41) and not in (42) contain 1- and 2-point functions only and
are easily proven to be equal using (41). A key observation is that conservation of momentum
implies different values for k′ on the lhs of (42): k′ = −k2 − k3, k

′ = −k3 and k′ = −k2

respectively. Then, graphically:

Tρ0 − (k2 + k3) · (k2 + k3)

1
2

2 3
−

1

2 3

− (k2 + k3) · k3

1

2 3
− (k2 + k3) · k2

1

2 3
= ρ0 ∂τ1

1
2
3 (43)

which is clearly true after simplifying the wedge graphs and considering the graphical rules
of section 2.3.1. There are two points worth noting: first, the nonlinear symmetry leads to
cross-cancellations between disconnected correlation functions of different rank. Second, the
particular dot-product structure of the vertex, together with conservation of momentum, once
again produces interesting combinatorial factors which, in the particular case of (43), allow a
single wedge graph to cancel two wedge graphs. A generalization of this kind of computation
is not a hard exercise.

5. Conclusions and outlook

As a complementary approach to the direct development of approximations for an interacting
fluid, in this paper we have analyzed a non-interacting gas of Brownian particles; the system
has been fully characterized with the computation of all the n-point functions. The exact
correspondence between the particle and the field-theoretic formalism has been established by
the non-perturbative calculation of the ground state of the field theory and the determination
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of the Poissonian probability distribution for the density field. A non-perturbative treatment of
the gas vertex is thus necessary not only to preserve the fluctuation–dissipation theorem in bare
perturbation theory, as already argued in previous works [5], but also, and more fundamentally,
to define the unperturbed ground state as the starting point for a perturbative expansion of
physical observables in the inter-particle potential.

It is worth mentioning that after a nonlinear field redefinition operated through a Cole-
Hopf transformation [13] the action for the Brownian gas becomes Gaussian, with a simple
expression for the time-reversal symmetry. The trade-off is in the complicated relations
between correlators of Gaussian fields and correlators of the original, physical fields. The
explicit role of nonlinear field redefinitions in imposing relations between n-point functions
and their effect on symmetries is currently under study.

At the fundamental level, we have shown that the system can be described exactly by
a field theory and that no coarse-graining procedure is required to define the density field
appearing in the path integral formulation. Hence, when considering the interacting theory,
any divergence arising from the computation of loop diagrams cannot be ascribed to the
effective nature of the field-theoretic description: instead it should be considered as a genuine
feature of the problem and properly renormalized. Along the same lines, the particle origin
of the field theory, expressed through the vertex, might determine and naturally constrain the
renormalizability properties of the interacting theory.

Finally, the pattern through which the FDT is verified on the correlation functions of the
gas could shed light on its effect on the combinatorics of the interacting case, where the interest
is in the study of high order correlators to define a diverging dynamical length scale [14].
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Appendix A. Definitions and conventions

Fourier transforms for a finite system, in standard notation and using δk as a shorthand notation
for δk,0:

fk(t) = 1

V

∫
V

ddx e−ik·xf (x, t); f (x, t) =
∑

k

eik·xfk(t)

∑
k

eik·x = V δ(x);
∫

V

ddx e−ik·x = V δk.

In the field-theoretic formalism there is no need to consider a finite number of particles and
a finite volume as an intermediate step, the density being the only meaningful quantity. The
formulae above are then modified as follows:

f (k, t) =
∫

ddx e−ik·xf (x, t); f (x, t) =
∫

ddk

(2π)d
eik·xf (k, t)∫

ddk

(2π)d
eik·x = δ(x);

∫
ddx e−ik·x = (2π)dδ(k)

where all the integrations extend over the entire d-dimensional space.
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Note that due to the different definitions for the Fourier transforms, the dimensions of the
density field defined in (6) are different in Fourier space between the particle and the field-
theoretic formalism. For particle systems: �k=0(t) = 1

V

∫
V

ddx�(x, t) = ρ0 with dimensions
of volume−1; in the field-theoretic formulation: �(k = 0, t) = ∫

ddx�(x, t) = N which is
dimensionless.

Averages and a useful identity

• 〈A〉η indicates the average of the noise-dependent observable A over the realizations of
the noises η1, . . . , ηN .

• 〈A〉I.P . indicates instead the average over the initial positions of the particles. It is defined
in such a way that 〈1〉I.P . = 1:

〈A〉I.P . := 1

V

∫
V

ddx1(0) . . .
1

V

∫
V

ddxN(0)A.

In the particle formalism, with the above conventions for the Fourier transforms, identity
(A.1) follows as a straightforward result:

〈e−ikj1 ·xj1 (0) . . . e−ikjn ·xjn (0)〉I.P .

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δk1+...+kn
if all j ’s are the same

δk1+...+ka−1+ka+1+...+kn
δka

if all j ’s but ja are the same
. . . . . .

δk1 . . . δka−1δka+1 . . . δkb−1δkb+1 . . . δkn
δka+kb

if all j ’s differ but ja = jb

δk1 . . . δkn
if all j ’s differ.

(A.1)

Appendix B. Combinatorial coefficients

B.1. Factorials

Theorem. The coefficient Rl (defined in section 2.3.4) associated with a vertex with l dangling
lines is Rl = (l − 1)!.

We have verified in the text that the relation is true for some l: R2 = 1 = (2 − 1)!, as
shown in (16) and in the comment below it. Formula (19) implies R3 = 2 = (3 − 1)!. From
section 2.3.3 we also know that R4 = 6 = (4 − 1)!.

Assuming that the relation is valid for vertices having up to l dangling, we now prove it
for a vertex with l + 1 dangling lines. Let us consider one such a vertex, with the upper edge
labeled by l + 1.

Rl = =
1

2!
+

+ + . . . + (B.1)
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In a Dyson–Schwinger fashion the earliest vertex is pulled out of the blob. Conversely, when
contracting the edges generated by the extraction of the vertex, the graphs on the rhs generate
the graph on the lhs. Note that in (B.1) any vertex with two dangling lines must be a bare
vertex since no loop graphs contribute to the physical amplitudes.

All binary (non-planar) trees are generated by a recursive application of (B.1). They all
appear with coefficient 1 except for one particular case: when l is even, the graph on the rhs
for which r = s = l/2 appears only once and the factor of 1/2 out of the braces in (B.1)
is not simplified. However such a graph has a left-right symmetry and because of the very
same symmetry a factor 2 will arise in formula (B.3) since the partition with r elements and
the partition with s elements are equivalent. This cancellation will be tacitly assumed in the
argument following (B.3).

Every term on the rhs of (B.1) represents a partition of the l dangling lines into two groups
with r and s dangling lines each, with the constraint l = r + s. For a generic partition, the
Feynman rule associated with the extracted vertex reads:

−
∑
T I

2(k1 + · · · + kr) · (kr+1 + · · · + kl). (B.2)

The
∑

T I is over the
(
l

r

)
possible partitions depicted in (B.1). Applying conservation of

momentum, we can rewrite (B.2) as:

2
∑
T I

(
k1 + · · · + kr

) · (kl+1 + k1 + · · · + kr)

= 2
∑
T I

⎡
⎣(k2

1 + · · · + k2
r

)
+

⎛
⎝ r∑

i =j

ki · kj

⎞
⎠ + kl+1 · (k1 + · · · + kr)

⎤
⎦ . (B.3)

The sum over all TI labelings can be easily computed by the following argument: in the sum
each k2

i appears
(
l−1
r−1

)
times, since once ki is fixed to be in the group of r elements, the other

r − 1 elements can be chosen among l − 1 labels. Similarly, each ordered pair kikj in the
inner sum appears

(
l−2
r−2

)
times, since once ki and kj are fixed to be in the group of r elements,

the other r − 2 elements can be chosen among l − 2 labels:

=
(

l − 1

r − 1

)(
k2

1 + · · · + k2
l

)
+

(
l − 2

r − 2

) l∑
i =j

ki · kj +

(
l − 1

r − 1

)
kl+1 · (k1 + · · · + kl)

=
(

l − 1

r − 1

)(
k2

1 + · · · + k2
l

)
+

(
l − 2

r − 2

) l∑
i=1

ki · (−ki − kl+1) −
(

l − 1

r − 1

)
k2
l+1

=
(

l − 1

r − 1

)(−k2
l+1 + k2

1 + · · · + k2
l

)
+

(
l − 2

r − 2

) l∑
i=1

(−k2
i + k2

l+1

)

=
(

l − 2

r − 1

)(−k2
l+1 + k2

1 + · · · + k2
l

)
(B.4)

where in the second and third steps, conservation of momentum has been used.
Summing over all possible partitions of labels into two blobs and associating to each blob

with n dangling lines the appropriate Rn = (n − 1)!, we finally obtain

l−1∑
r=1

(
l − 2

r − 1

)
(r − 1)!(l − r − 1)! = (l − 2)!

l−1∑
r=1

1 = (l − 1)! (B.5)
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B.2. Generalized Stirling numbers

Theorem. The coefficient Cn (defined in section 2.4.4) associated with the c-vertex with n
dangling lines appearing in the computation of c-functions is: Cn = Sn−2, where Sn is the
sequence of generalized Stirling numbers (Sloane A001705 [12]).

We can write a Dyson-Schwinger equation similar to (B.1), with the important difference
that the c-vertex needs to have 3 dangling blobs: the first blob with l dangling lines, the second
one with m, and the third one with n − l − m. The factor 1/2! in (B.1) becomes 1/3! taking
into account the possible permutations of blobs. The rigorous argument about the cancellation
of symmetry factors for symmetric diagrams is analogous to the one which followed
equation (B.1). Formula (B.2) is replaced by the Feynman rule for the c-vertex obtained
in (26):

1

3!

∑
T I

[(k1 + · · · + kl)
2 + (kl+1 + · · · + kl+m)2 + (kl+m+1 + · · · + kn)

2]. (B.6)

In the sum over TI relabelings each k2
i appears once for each of the possible

(
n

l

)(
n−l

m

)
labelings,

since ki has to be in one of the three groups in (B.6). If we ask an ordered pair kikj to appear
in the blob with l dangling lines, this happens

(
n−2
l−2

)(
(n−2)−(l−2)

m

)
times, since once ki and kj are

fixed to be in the group of l elements, the other l − 2 labels can be chosen among n − 2; the
other labels are then partitioned into blobs with m and n − l − m dangling lines respectively.
Focusing instead on the blobs with m and n − l − m a given ordered pair appears

(
n−2
m−2

)(
n−m

l

)
and

(
n−2
l−2

)(
(n−2)−(l−2)

m

)
times respectively. Finally, with each blob with r dangling lines we

associate a factor (r − 1)! as derived in the previous section. The sum over TI labelings can
now be written as:

1

3!

n−2∑
l=1

n−l−1∑
m=1

(l − 1)!(m − 1)!(n − l − m − 1)! ·

·
{(

n

l

)(
n − l

m

) n∑
i=1

k2
i +

[(
n − 2

l − 2

)(
n − l

m

)
+

(
n − 2

m − 2

)(
n − m

l

)

+

(
n − 2

n − l − m − 2

)(
l + m

l

)] n∑
i =j

ki · kj

}
(B.7)

Exploiting once more conservation of momentum:
∑n

i =j ki · kj = −∑n
i=1 k2

i . We can then
factor out

∑n
i=1 k2

i which always cancels the denominator of the rational function generated
by the c-vertex and will be dropped in the following. Simplifying the binomial coefficients
we obtain:

1

3!

n−2∑
l=1

n−l−1∑
m=1

(n − 2)!

(
n − l

m(n − l − m)
+

n − m

l(n − l − m)
+

l + m

lm

)
.

Moreover, the three terms in parentheses clearly give the same result when summed over l and
m: for simplicity we focus only on the third one and multiply by 3. We thus have, exchanging
the order of the summations in the second term:

1

2!
(n − 2)!

(
n−2∑
l=1

n−l−1∑
m=1

l

m
+

n−2∑
m=1

n−m−1∑
l=1

m

l

)

= 1

2!
(n − 2)!

(
n−2∑
l=1

Hn−l−1 +
n−2∑
m=1

Hn−m−1

)
= Sn−2

where by Hn we have indicated the harmonic numbers.
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Appendix C. Graphology

C.1. Correlation functions are represented by ladder graphs

Theorem. The analytic expression associated with an n-point ladder graph, namely:

exp
[−k2

1(t2 − t1) − · · · − (k1 + · · · + kn−1)
2(tn − tn−1)

]
(C.1)

is the same as the analytic formula (9) for the n-point connected correlation function computed
in the particle formalism:

〈�(k1, t1) . . . �(kn, tn)〉η = exp

⎛
⎝T

n∑
i<j

ki · kj (tj − ti)

⎞
⎠ . (C.2)

Examples of ladder graphs are drawn in figure (33), and the absolute value of the time
differences in (C.2) has been removed considering the convention t1 < · · · < tn.

Let us define the variables k̂’s as k̂j = ∑j

i=1 ki . Hence we can rewrite (C.1) as

exp

(
−

n−1∑
m=1

k̂2
m(tm+1 − tm)

)
. (C.3)

We will now prove the theorem, showing that the exponent in (C.2) can be rewritten as the
exponent in (C.3).

Expanding (tj − ti) in a telescopic sum:

tj − ti = (tj − tj−1) + (tj−1 − tj−2) + · · · + (ti+1 − ti) =
j−1∑
m=i

(tm+1 − tm)

we can write:
n∑

j=1

j−1∑
i=1

ki · kj (ti − tj ) =
n∑

j=1

j−1∑
i=1

j−1∑
m=i

ki · kj (tm − tm+1).

Exchanging the order of the summations we obtain:

n∑
j=1

j−1∑
i=1

j−1∑
m=i

−→
n−1∑
m=1

m∑
i=1

n∑
j=m+1

(C.4)

and looking at the innermost summation, conservation of momentum implies:⎛
⎝ n∑

j=m+1

kj

⎞
⎠ · ki(tm − tm+1) = −

m∑
j=1

kj · ki(tm − tm+1). (C.5)

Applying (C.4), (C.5) and the definition of k̂ it is now easy to pass from the exponent in (C.2)
to the exponent in (C.3):

n∑
j=1

j−1∑
i=1

j−1∑
m=i

ki · kj (tm − tm+1) =
n−1∑
m=1

m∑
i=1

n∑
j=m+1

ki · kj (tm − tm+1) (C.6)

= −
n−1∑
m=1

m∑
i=1

m∑
j=1

kj · ki(tm − tm+1) = −
n−1∑
m=1

k̂2
m(tm − tm+1). (C.7)
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C.2. Cancellations among r-graphs with a stalk

Theorem. In the sum over topologically inequivalent (TI) labelings, r-graphs with a stalk
cancel one another, leaving only one n-ladder graph.

Examples of r-graphs with a stalk appear in the first line of (34). Let us assume that one
of the r-vertices of a graph has n > 2 dangling lines. The combinatorial factor associated to
such vertex is Rn = (n − 1)!. In the sum over TI labelings, graphs with such a vertex can
be obtained in several ways: either from a labeling of the graph itself or from a labeling of a
‘less contracted’ graph which induce one or more contractions generating the vertex. Since
n > 2 we know that at least one contraction has occurred. We can now work backwards and
undo the contraction to obtain all the possible graphs which could have generated the original
graph. From the group of n labels we can pull out a group of k labels, leaving a vertex with
n− k + 1 dangling lines in such a way that the largest label is in the extracted group. The rules
in section 2.3.4 imply then that the edge we have just created must indeed be contracted. The
combinatorial factors associated with the two vertices just created are (k − 1)! and (n − k)!
respectively. Note that since the largest label has to be in the group with k elements, among
the n − 1 labels left we have to choose k − 1 of them. Summing over all possibilities:

n−1∑
k=2

(
n − 1

k − 1

)
(k − 1)!(n − k)! = (n − 1)!. (C.8)

Remember now that each contraction brings a factor of (−1) so that all the graphs we generated
with one contraction less than X appear with a relative minus sign. But (C.8) implies that the
numerical value of the coefficient is the same and the sum over the whole group of graphs
vanishes.

On the other side ladder diagrams survive. In fact, in order to create a ladder, from a blob
with n labels we pull out recursively a group of n − 1 labels which do not contain the earliest
time among the n labels. Then, the argument above leading to the graph cancellations does
not apply.

C.3. c-graphs cancel r-graphs without a stalk

Theorem. In the sum over topologically inequivalent (TI) labelings, c-graphs completely
cancel r-graphs without a stalk.

Examples of r-graphs without a stalk and c-graphs appear in the second and third lines of
(34) respectively.

Let us consider an n+1 point function. r-graphs without a stalk have n leaves and c-graphs
have n + 1 leaves. It is useful to note that for r-graphs the label ‘1’ is constrained by causality
to appear on the upper vertex (root), as a consequence of the contraction of the stalk. For
c-graphs, instead, the c-vertex itself is always labeled by ‘1’ (‘1’ being the smallest among
all the descendant labels), another label ‘1’ has to be placed on some leaf, and because of
this some edges need to be contracted according to the rules discussed in section 2.3.1. The
key idea of the proof is that for an r-graph the number of edges dangling from the root is
independent of the labeling, whereas for c-graphs edge contractions cause this number to vary.

Let us consider an r-graph X whose root has l dangling lines with the associated
combinatorial factor (l − 1)!. It is possible that particular labelings of some c-graphs Y
which initially have 3, . . . , l + 1 dangling lines produce X after operating the contractions
induced by the labelings. Those graphs will be multiplied by the generalized Stirling numbers
S1, . . . , Sl−1. In particular, we can construct all the graphs Y starting from a c-vertex with l + 1
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dangling lines and ‘pulling down’ groups of edges with the constraints that a c-vertex must
have at least three dangling lines and that ‘1’ labels one of the lowest leaves in such a way to
induce a contraction leading back to a root with l dangling lines.

An example should make things clear. One of the r-graphs without a stalk contributing to
the computation of the 5-point function, with the appropriate factor of (4 − 1)! = 6, is:

X = 6 (C.9)

Among the c-graphs, the ones which follow generate X if, as explained above, ‘1’ labels one
of the lowest leaves. The coefficient in front of each graph is made up of: a sign which keeps
track of the number of contracted edges; the generalized Stirling number associated to the
c-vertex; the product of coefficients associated to the underlying r-vertices; the number of
labelings which leave ‘1’ to label one of the lowest leaves.

Y s = −26 · 1 · 1 + 5 · 1 · 4

1

+ 1 · 2 · 4

2
− 1 · 1 · 1 · 4

2

2

1
→ −6

or equivalently:

−S3 + S2

(
4

1

)
+ S1

(
4

2

)
2! + S1

(
4

2

)(
2

1

)
= −(4 − 1)!. (C.10)

We see that (l − 1)! is exactly canceled by a linear combination of the generalized Stirling
numbers S1, . . . , Sl−1. In this case l = 4.

Working out explicitly more complicated graphs through the ‘pulling down’ procedure,
it is not hard to write the general form for the lhs of (C.10), which is, modulo a sign:

Sl−1 −
l−2∑
k1=1

Sl−1−k1

(
l

k1

)
k1! +

l−2∑
k2=2

k2−1∑
k1=1

Sl−1−k2

(
l

k2

)(
k2

k1

)
(k2 − k1)!k1!

−
l−2∑
k3=3

k3−1∑
k2=2

k2−1∑
k1=1

Sl−1−k3

(
l

k3

)(
k3

k2

)(
k2

k1

)
(k3 − k2)!(k2 − k1)!k1! + . . .

= Sl−1 −
l−2∑
k1=1

Sl−1−k1

l!

(l − k1)!
+

l−2∑
k2=2

Sl−1−k2

l!

(l − k2)!

k2−1∑
k1=1

1

−
l−2∑
k3=3

Sl−1−k3

l!

(l − k3)!

k3−1∑
k2=2

k2−1∑
k1=1

1 + · · ·

= Sl−1 +
∞∑

j=1

l−2∑
kj =j

(−1)jSl−1−kj

l!

(l − kj )!

(
kj − 1

j − 1

)

= Sl−1 +
l−2∑
k=1

Sl−1−k

l!

(l − k)!

k∑
j=1

(−1)j
(

k − 1

j − 1

)

= Sl−1 − lSl−2 = (n − 1)!.
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